Pan-Cellulosomics of Mesophilic Clostridia: Variations on a Theme

نویسندگان

  • Bareket Dassa
  • Ilya Borovok
  • Vincent Lombard
  • Bernard Henrissat
  • Raphael Lamed
  • Edward A Bayer
  • Sarah Moraïs
چکیده

The bacterial cellulosome is an extracellular, multi-enzyme machinery, which efficiently depolymerizes plant biomass by degrading plant cell wall polysaccharides. Several cellulolytic bacteria have evolved various elaborate modular architectures of active cellulosomes. We present here a genome-wide analysis of a dozen mesophilic clostridia species, including both well-studied and yet-undescribed cellulosome-producing bacteria. We first report here, the presence of cellulosomal elements, thus expanding our knowledge regarding the prevalence of the cellulosomal paradigm in nature. We explored the genomic organization of key cellulosome components by comparing the cellulosomal gene clusters in each bacterial species, and the conserved sequence features of the specific cellulosomal modules (cohesins and dockerins), on the background of their phylogenetic relationship. Additionally, we performed comparative analyses of the species-specific repertoire of carbohydrate-degrading enzymes for each of the clostridial species, and classified each cellulosomal enzyme into a specific CAZy family, thus indicating their putative enzymatic activity (e.g., cellulases, hemicellulases, and pectinases). Our work provides, for this large group of bacteria, a broad overview of the blueprints of their multi-component cellulosomal complexes. The high similarity of their scaffoldin clusters and dockerin-based recognition residues suggests a common ancestor, and/or extensive horizontal gene transfer, and potential cross-species recognition. In addition, the sporadic spatial organization of the numerous dockerin-containing genes in several of the genomes, suggests the importance of the cellulosome paradigm in the given bacterial species. The information gained in this work may be utilized directly or developed further by genetically engineering and optimizing designer cellulosome systems for enhanced biotechnological biomass deconstruction and biofuel production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characteristics of Tartrate-fermenting Species of Clostridium.

While establishing methods for the control of spoilage in the tartrate recovery plants of California, Vaughn et al. (1943a,b; 1946) isolated a number of D-tartrate-decomposing microorganisms, including several mesophilic clostridia. These organisms, among the most active fermenters of D-tartrate, are of historical as well as economic interest, for it was in a tartrate medium that Pasteur (1863)...

متن کامل

Microbial spoilage of portuguese chouriço along shelf life period

Microbial flora of portuguese chouriço (Alentejano (A) and Ribatejano (R)) with abnormal sensorial characteristics along shelf life was studied. Mesophilic anaerobic bacteria, enterococci, mesophilic sporeformers, coliforms, coagulase-positive staphylococci, sulphite reducing clostridia, Clostridium perfringens, moulds and yeasts were the most representative in both types of chouriço.

متن کامل

Mesophilic and Thermophilic Conditions Select for Unique but Highly Parallel Microbial Communities to Perform Carboxylate Platform Biomass Conversion

The carboxylate platform is a flexible, cost-effective means of converting lignocellulosic materials into chemicals and liquid fuels. Although the platform's chemistry and engineering are well studied, relatively little is known about the mixed microbial communities underlying its conversion processes. In this study, we examined the metagenomes of two actively fermenting platform communities in...

متن کامل

Characterization of the cellulolytic and hydrogen-producing activities of six mesophilic Clostridium species.

AIMS To characterize cellulolytic, hydrogen-producing clostridia on a comparable basis. METHODS AND RESULTS H(2) production from cellulose by six mesophilic clostridia was characterized in standardized batch experiments using MN301 cellulose, Avicel and cellobiose. Daily H(2) production, substrate degradation, biomass production and the end-point distribution of soluble fermentation products ...

متن کامل

Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia.

Clostridium cellulolyticum ATCC 35319 is a non-ruminal mesophilic cellulolytic bacterium originally isolated from decayed grass. As with most truly cellulolytic clostridia, C. cellulolyticum possesses an extracellular multi-enzymatic complex, the cellulosome. The catalytic components of the cellulosome release soluble cello-oligosaccharides from cellulose providing the primary carbon substrates...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2017